Skip to main content

Images

Generate images using Gemini’s native image generation capabilities.

Endpoint

POST https://api.scalellm.dev/v1beta/models/gemini-3-pro-image-preview:generateContent

Examples

import google.generativeai as genai
import base64

genai.configure(
    api_key="sk_your_key",
    transport="rest",
    client_options={"api_endpoint": "api.scalellm.dev"}
)

model = genai.GenerativeModel("gemini-3-pro-image-preview")

response = model.generate_content("Create a picture of a futuristic city at sunset")

# Save the generated image
for part in response.candidates[0].content.parts:
    if hasattr(part, 'inline_data'):
        image_data = base64.b64decode(part.inline_data.data)
        with open("generated-image.png", "wb") as f:
            f.write(image_data)

Request Body

ParameterTypeRequiredDescription
contentsarrayYesArray of content objects
generationConfigobjectNoGeneration configuration

Content Object

FieldTypeDescription
partsarrayArray of part objects with text prompt

Part Object

FieldTypeDescription
textstringImage generation prompt

Response

The response includes base64-encoded image data:
{
  "candidates": [
    {
      "content": {
        "parts": [
          {
            "inlineData": {
              "mimeType": "image/png",
              "data": "iVBORw0KGgoAAAANSUhEUgAA..."
            }
          }
        ],
        "role": "model"
      },
      "finishReason": "STOP"
    }
  ]
}

Response Fields

FieldTypeDescription
candidatesarrayArray of generated candidates
candidates[].content.parts[].inlineData.mimeTypestringImage MIME type (e.g., image/png)
candidates[].content.parts[].inlineData.datastringBase64-encoded image data
candidates[].finishReasonstringWhy generation stopped

More Examples

Artistic Image

import google.generativeai as genai
import base64

genai.configure(
    api_key="sk_your_key",
    transport="rest",
    client_options={"api_endpoint": "api.scalellm.dev"}
)

model = genai.GenerativeModel("gemini-3-pro-image-preview")

response = model.generate_content(
    "An oil painting of a serene mountain landscape at dawn"
)

for part in response.candidates[0].content.parts:
    if hasattr(part, 'inline_data'):
        image_data = base64.b64decode(part.inline_data.data)
        with open("landscape.png", "wb") as f:
            f.write(image_data)

Product Visualization

import google.generativeai as genai
import base64

genai.configure(
    api_key="sk_your_key",
    transport="rest",
    client_options={"api_endpoint": "api.scalellm.dev"}
)

model = genai.GenerativeModel("gemini-3-pro-image-preview")

response = model.generate_content(
    "A sleek smartphone on a minimalist white desk, product photography"
)

for part in response.candidates[0].content.parts:
    if hasattr(part, 'inline_data'):
        image_data = base64.b64decode(part.inline_data.data)
        with open("product.png", "wb") as f:
            f.write(image_data)

Available Models

ModelDescription
gemini-3-pro-image-previewMultimodal with native image generation

Headers

HeaderRequiredDescription
x-goog-api-keyYesYour ScaleLLM API key (sk_your_key)
Content-TypeYesapplication/json
For text generation and vision tasks, see the Chat endpoint.